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Av. Bento Gonçalves 9500, Porto Alegre - RS - Brazil

{pablo.rodrigues, mspctirone, gboliveira, weverton.cordeiro, jose.azambuja} @inf.ufrgs.br

Abstract—Virtualization has become the powerhouse for sev-
eral networking concepts, from local area networks (VLANs)
to software switches, software-defined control plane, etc. Recent
proposals like HyPer4, HyperVDP, and P4Visor brought the
concept to the forwarding plane, by enabling emulation of several
network contexts and/or composing several functions through a
single program. In spite of the progress achieved, the real power
of forwarding plane virtualization remains untapped. In this
letter, we present P4VBox, a reconfigurable architecture for data
plane virtualization. P4VBox provides parallel execution and hot-
swapping of virtual switch instances, without requiring switch
source code (for either emulation or program composition). We
experimented P4VBox on a NetFPGA-SUME board with three
virtual switches: a layer-2 switch, a simple router, and a firewall.
Area occupation measurements evidence the feasibility of running
up to 13 virtual switches in parallel. Compared to existing work,
performance data show an improvement of up to two orders of
magnitude for bandwidth and six orders for latency.

Index Terms—Programmable Forwarding Planes, P4, Switch
Virtualization, NetFPGA-SUME, Partial Reconfiguration.

I. INTRODUCTION

THE concept of programmable forwarding planes has seen
a renewed interest by industry and academia with the

advent of domain-specific languages (DSL) like POF [1] and
P4 [2]. These languages unleashed innovation in the data
plane [3], helping break further the “network ossification”, and
reshaped its research agenda to include aspects from switch
program composition to verification and switch debugging. In
this letter, we make the case for data plane virtualization.

The motivations for virtualization in the data plane are
manifold, including network slicing and snapshotting, network
function composition, and switch program profiling and de-
bugging [4]. Yet, existing “hypervisors” for P4-based switches
have only enabled switch emulation [4], [5] or composition
of P4-based switch functions into a single program [6]. As
a result, they may pose a severe performance penalty and a
large memory footprint. More importantly, they require access
to switch source code for merging and custom compilation,
thus violating intellectual property of switches.

We posit that a data plane hypervisor must allow network
operators to deploy and hot-swap truly independent virtual P4-
based switch instances, deliver a performance similar as if
the virtual instances were running directly on hardware, and
allow vendors to distribute switch byte-code while protecting
their intellectual property. Although previous investigations
like HyPer4 [4], HyperVDP [5], and P4Visor [6] partially
fulfill some of these requirements, satisfying them simultane-
ously poses the following research challenges: (#1) decouple

virtual switch instances from the virtualization environment,
(#2) provide network flow isolation, (#3) ensure hardware
resource isolation, (#4) support virtual networking within the
hypervisor, and (#5) deliver an implementation with feasible
performance and memory footprint.

HyPer4 and HyperVDP fall short in satisfying any of these
research challenges, as they require custom compilation of
switch source code, resulting in a data plane model (used
for emulating the switch) that is tightly coupled with the
hypervisor (challenge #1); use non-standard tagging scheme
to provide flow isolation between switches, thus forcing other
networking devices to support the same scheme, which may
be unsuitable (#2); do not provide proper hardware resource
isolation schemes like physical to virtual switch port mapping,
CPU slicing, etc. (#3); emulate virtual networking with DSL
primitives like P4 recirculate and resubmit, sacrific-
ing throughput and latency (#4); and decouple match-action
stages into a combination of several tables, leading to a ratio
of declared tables per stage that makes it unfeasible to emulate
more complex switches (#5). P4Visor, on the other hand, is
able to deliver implementations of P4-based switches with
feasible performance and memory footprint (#5), but without
support to actual virtualization (challenges #1-4).

In this letter, we present P4VBox, an architecture that
meets all the data plane virtualization requirements mentioned
earlier, and an implementation methodology for hot-swapping
virtual P4-based switches in the proposed architecture. We
expand the state-of-the-art by providing a proof of concept de-
ployment of the proposed architecture on a NetFPGA SUME
board and discussing results achieved and lessons learned.

The novelty of this work lies in the following contributions:
• A conceptual and loosely coupled architecture for switch

virtualization (thus addressing challenge #1) that provides
network flow isolation through standard protocols (#2),
hardware resource isolation (#3), virtual networking be-
tween switch instances hosted in the hypervisor (#4), and
improved performance and memory occupation (#5);

• An implementation methodology for partially reconfigur-
ing P4-based switches in FPGA boards.

In the remainder of this letter we present our conceptual de-
sign, followed by a discussion on deployment and evaluation.
We then conclude with lessons learned and research directions.

II. RECONFIGURABLE P4VBOX ARCHITECTURE

We argue that any switch hypervisor must allow one to
deploy virtual switches from the same switch byte-codes one
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Fig. 1. A comparison between P4VBox and the canonical NetFPGA design.

would deploy in a non-virtualized environment. P4VBox is an
architecture we propose to fulfill that vision. Built on top of the
canonical NetFPGA reference design [7], P4VBox provides
support for deployment and parallel execution of multiple P4-
based switches, tackling the discussed research challenges.

Figure 1 shows the architectures of the canonical NetFPGA
reference design and of P4VBox. The canonical design is com-
posed of the basic NetFPGA structure and a single Output Port
Lookup (OPL) instance. Even though the canonical reference
design alone enables one to implement a loosely coupled P4-
based switch with feasible performance and memory footprint
(challenges #1 and #5), it does not support switch instances
running in parallel, and thus data flow and hardware resource
isolation, and virtual networking (#2-4). P4VBox solves these
challenges by expanding it to introduce an Input P4 Interface
(IPI), an Output P4 Interface (OPI), and multiple OPL in-
stances. In the following, we describe the proposed modules,
how P4VBox is able to achieve challenges #2-4, as well as its
reconfiguration capabilities.

A. Canonical NetFPGA Reference Design Architecture

We depict in Figure 1(a) an overview of canonical design.
It consists of four 10Gbps and DMA I/O ports, Input Arbiter
(IA), Output Port Lookup (OPL), and BRAM Output Queues
(BOQ). The IA is responsible for serializing the packet frames
received from the input ports and delivering them to the OPL
module. The OPL is a placeholder to accommodate an imple-
mentation of an independent virtual switch, which performs
packet processing and determines the output port. The BOQ
buffers packets before they are copied to the output ports. The
Control enables system monitoring and configuration.

For generating a switch implementation from a P4 descrip-
tion, we take advantage of a High-Level Synthesis (HLS)
methodology and the Simple Sume Switch (SSS) model,
available from the P4-NetFPGA project1. The SSS is similar to
the Very Simple Switch (VSS) reference model and supports
switch logic composed of a single packet parser, match-action
pipeline, and packet deparser.

1https://github.com/NetFPGA/P4-NetFPGA-public

B. P4VBox Architecture

We show P4VBox in Figure 1(b). It improves the canonical
design by replacing the single OPL module by a structure
with multiple virtual OPL modules and an IPI and OPI. When
instancing multiple OPLs, three issues arise: (i) multiple input
flows must be distributed to deployed OPLs, (ii) processed
flows must be delivered to shared output ports, and (iii) switch
instances must be swapped in OPLs during runtime.

We address the first issue with the Input P4 Interface (IPI),
a module that distributes data frames to multiple P4 switch
instances deployed on OPLs. It receives frames from the IA
and decides whether to forward them to a switch or to drop
them silently. To this end, the IPI searches for a specific Switch
identifier (Sid). In case the Sid of a deployed switch is found,
it forwards the frame. Otherwise, the frame is dropped.

Output Port Lookup (OPL) instances are the same as
the one used by the canonical reference design. The only
difference is that P4VBox can support as many OPLs as one
can physically fit in the board, instead of only one. Each OPL
can receive a switch instance with individual set of networking
protocols, given that they implement the Sid tagging scheme.
Switch metadata, variable scope, and control flow operate
without sharing information or resources with other instances.

The Output P4 Interface (OPI) addresses the second issue,
delivering packets from the virtual switch instances to the
corresponding output ports. It works like a demultiplexer,
receiving frames from each deployed virtual instance and
forwarding them to the target physical port.

The Control module provides support to the architecture
and implements a Command-Line Interface (CLI) to interact
with the network operator. It has been modified mainly to sup-
port feedback from the IPI and OPI, deployment of multiple
P4 switch instances, and partial reconfiguration.

Combined, these components form the P4VBox architec-
ture, which is able to satisfy all previously mentioned research
challenges. In the following, we describe how we address
challenges #2-4: network flow isolation, hardware resource
isolation, and virtual networking within the hypervisor.



Network flow isolation (#2). The Sid can follow any regular
expression, as long as it is informed to the IPI through the
Control module. We adopt VLAN (802.1Q) concatenated with
the frame destination address as Sid and assume that incoming
data frames have a 32-bit tag. With this approach, virtual
switch instances belonging to a same VLAN cannot share
physical I/O ports in the physical switch.

Hardware resource isolation (#3). The IPI and OPI are
responsible for physical to logical I/O port mapping. They
enable, for example, each virtual switch to have an arbi-
trary number of virtual ports. To perform port mapping,
we use the src_port and dst_port fields of struct
sume_metadata_t. The I/O port mapping is stored in the
match+action VLAN table in the Control module.

Virtual networking within the hypervisor (#4). We provide
virtual networking by copying to the DMA port those frames
that are destined to another virtual switch within the hypervi-
sor. To this end, we also use the VLAN match+action table in
the Control module, matching the frame destination address.

C. Partial Reconfiguration for Switch Hot-Swapping

Partial reconfiguration solves the third issue discussed in the
previous subsection and represents the cornerstone of P4VBox,
enabling the dynamic swap of P4-based switches within pre-
defined OPLs. It requires the implementation of a single full
configuration for the architecture, with a hardcoded number of
OPLs, and partial configurations, one for each switch instance.
Note that it is possible to change the number of hardcoded
OPLs, though it requires full board reconfiguration.

The use of partial configurations also requires improvements
on the canonical NetFPGA reference design, especially in
the Control module and supporting hardware structures. The
Control modifications include internal and external support.
The former is required to maintain consistency between IPI,
deployed switch instances, and OPI and obtain status reports
from deployed modules. The latter, through the CLI, is re-
quired to interface with the network operator, which is able
to load new P4-based switches into P4VBox, check which are
deployed, and reconfigure them. Supporting hardware, such
as memories and configuration ports, is used to store partial
configurations and configure modules during runtime.

Through partial reconfiguration, P4VBox can perform hot-
swapping, allowing the network operator to deploy new P4
switch instances during execution, without halting the system,
and to reduce deployment times of P4 modules around two
orders of magnitude, when compared to full reconfiguration.

III. IMPLEMENTATION METHODOLOGY

Our proof of concept implementation of P4VBox is based
on a fork of the P4-NetFPGA code, with a total diff of around
3,000 lines of code2. P4VBox components were developed in
VHDL and Verilog hardware description languages.

To generate P4-based switch instances and instance them in
P4VBox’s OPLs, we run P4 sources through a HLS process.

2GitHub repo: https://github.com/p4vbox/

Figure 2 presents our proposed HLS flow. Initially, the HLS
flow receives a .p4 source file described in P416 and an
arch.cfg file from the network operator. The latter contains
information that signals to the Xillinx SDNet compiler which
segments of the code can be optimized during hardware
implementation. This information includes the largest packet
size that the parser and deparser have to support, the maximum
number of clock cycles an external function needs to complete,
and the size of the address space to allocate to an external
function. Since the P4 language is target independent, the
compiler always assumes the worst-case scenario regarding
the previous information. Then, the Xilinx SDNet compiler
makes the conversion of the P416 code to the intermediate PX
description language. Two files are generated in the process:
a description of the virtual switch in PX (.eHDL) and a
file containing information regarding the interface with the
control plane (.info). The .eHDL and arch.cfg files are
given as input to Deploy.tcl, a script that deploys the
virtual switch into P4VBox. Finally, the .info file is used
as input to Define Switch Tables.sh script, which
creates internal routing tables for the virtual switch.

To evaluate P4VBox, we implemented benchmarks from
HyPer4 [4], HyperVDP [5], and P4Visor [6]: a layer-2 switch,
a router, a firewall, and a combination of the layer-2 switch
with the router. The first one is a simple L2 switch with
learning ability that routes packets based on two match-action
tables, for source and destination MAC tables; the second is
a router that processes packets with the longest prefix match,
locating destination address in an IPv4 routing table, updating
source and destination MAC addresses, decrementing TTL,
and setting the output port; and the third one is a L3/L4
firewall. We translated all switches to P416 before using the
HLS flow. For the translation, we used the p4c compiler.

Table I shows the area occupation for the P4VBox archi-
tecture and the P4 modules. Note that the architecture com-
ponents are always implemented on the board, independently
of the deployed P4 switch instances. The static part requires
around 12.2% of the board’s LUTs, where the Control, 10Gbps
Ports, and DMA together account for 84% of this value. The
L2 switch, router, and firewall switch instances require 6.5%,
13.3%, and 10% of the board’s LUTs, respectively. These
results provide evidence that the NetFPGA-SUME could run
in parallel up to thirteen deployed L2 switch instances, six
routers, eight firewalls, or a combination of the previous.

IV. RESULTS

We simulated P4VBox on a NetFPGA-SUME board and
implemented the switches mentioned earlier. The implemen-
tations resulted in a clock frequency of 528.6 MHz, as the
critical path resides in the fixed part of the architecture. We
measured latency and bandwidth by injecting packet loads
(2x 64-byte packet for the first and 64x 256-byte packets for
the second) and evaluating the number of clock cycles. We
compared these results with those of software (Native bmv2
and HyPer4) and hardware (P4Visor) switches. The software
switches were run on an Intel Core i7-6500 with 16GB RAM.
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Fig. 2. Virtual switch deployment flow in P4VBox.

TABLE I
NETFPGA-SUME OCCUPATION

Module LUT FF
# % # %

4x10Gbps Ports and DMA 26997 6.2% 34646 4.0%
Input Arbiter 2120 0.5% 4564 0.5%
Input P4 Interface 229 0.1% 1679 0.2%
Output P4 Interface 6181 1.4% 9779 1.1%
Control 17172 4.0% 25573 3.0%
L2 switch 28096 6.5% 40506 4.7%
Router 57704 13.3% 84149 9.7%
Firewall 45683 10.5% 74344 8.6%
TOTAL 184182 42.5% 275240 31.8%

TABLE II
LATENCY (µs)

P4 Module Native bmv2 HyPer4 [4] P4Visor [6] P4VBox
L2 switch 460,500 1,570,000.0 – 0.54
Router 642,300 3,209,000.0 109.1 0.83
Firewall 553,600 2,133,000.0 – 0.82
L2 + Router – 7,715,300.0 114.2 0.85

TABLE III
BANDWIDTH (Mbps)

P4 Module Native bmv2 HyPer4 [4] P4Visor [6] P4VBox
L2 switch 105.0 22.4 – 88,760.9
Router 69.5 12.0 4,604.6 81,282.9
Firewall 67.0 14.6 – 81,801.6
L2 + Router – 3.79 4,350.9 88,760.9

Tables II and III present latency and bandwidth, respectively.
Observe that, while bmv2 and HyPer4 are software-based, they
represent the only feasible basis for a comparative analysis.

When considering latency, P4VBox is up to six orders of
magnitude faster than software switches and around 130 times
faster than P4Visor. When considering bandwidth, P4VBox
provided up to two orders of magnitude more bandwidth than
software switches and around 20 times more than P4Visor. The
main reason for the better performance of P4VBox compared
to software switches is that, as a dedicated FPGA-based
platform, it runs much faster than Native bmv2 and HyPer4
on a general-purpose CPU. When compared to P4Visor, the
parallel architecture of P4VBox provides faster processing.

Table IV shows the number of match+action tables required.
Observe that P4VBox requires the same number of tables
per switch as in bmv2, whereas HyPer4 and HyperVDP
decouple match-action stages into a combination of several

TABLE IV
TABLE USAGE IN RUNTIME FOR DIFFERENT PROGRAMS

P4 Module Native bmv2 HyPer4 [4] HyperVDP [5] P4VBox
L2 switch 2 13 5 2
Router 4 28 16 4
Firewall 3 22 8 3
L2 + Router – – – 6 (2 + 4)

tables, making it unfeasible to run them in NetFPGA.
We measured reconfiguration times according to [8] and a

66 Mbps JTAG configuration port. Achieved reconfiguration
times may vary according to bitstream size and configuration
port bandwidth. Therefore, a smaller module or a configura-
tion port with more bandwidth could improve reconfiguration
times. Considering 2.8 Mb bitstreams, all switches required
0.72 seconds, against 60 seconds for a full board configuration.
Even though we were able to lower deployment time by
98.8%, one could further reduce it by switching to configura-
tion ports with more bandwidth, such as ICAP and SelectMAP,
possibly lowering deployment times to around 0.015 seconds.

V. FINAL CONSIDERATIONS

We presented P4VBox, a proof-of-concept virtualization
solution for P4 switches based on the Simple Sume Switch
model for a NetFPGA SUME target environment. Our exper-
iments provided evidence of the possibility to achieve near
line-rate performance for switch instances running on top of
a hypervisor, while satisfying typical virtualization require-
ments like hot-swapping and context and resource isolation.
Implementation results were able to advance the state-of-the-
art in terms of bandwidth and latency. For future work, we
intend to (i) port our conceptual architecture to a Barefoot
Tofino and Tofino 2, and (ii) address security-related aspects
like match+action table isolation between switch instances.
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